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Abstract Recent work showing the validity of hyperscaling involved
results for finite size systems very near the critical point. We study
this problem in more detail, and give estimators related to the Binder
cumulant ratio which seem to approach the critical temperature from
above and below. Based on these results, we estimate that the renor-
malized coupling constant, computed for the temperature fixed at the
critical temperature and then taking the large system-size limit, is about
4.9 £+ 0.1, and give a likely lower bound for it of 4.5. These estimates
are argued to suffice to show the validity of hyperscaling.

The standard, sample problem in the study of critical phenomena is the Ising
model. At a critical point in, for example, the temperature — magnetic field
plane, many of the thermodynamic properties of a magnet become singular
like some, often non-integer, power of a measure of the distance to the critical
point in this plane. There are a number of these properties and the exponents
describing their singular behavior are called critical indices. One of the long-
standing problems in the study of the Ising model has been the validity of
hyper-scaling. This property relates to the question of whether the relations
between the critical indices which involve the spatial dimension hold or not.
One of the key measures of the validity of hyperscaling is whether the quantity,
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vanishes as the inverse temperature K approaches the critical-point value K.
for the magnetic field H at its critical value of zero. Here d is the spatial
dimension, v is the volume of a lattice cell, a is the lattice spacing, L is the
system size, x is the magnetic susceptibility, and £ is correlation length. If
limg k. g(K) = ¢g* =0, then hyperscaling may fail, otherwise it holds.
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Fig. 1. Monte Carlo results for g(K, L)(K/K.)'® vs. (£,/L)?* for the three
dimensional Ising model.

In his study by exact calculation of the two-dimensional, Ising model, Baker
[1] found that the critical point in the temperature — system-size plane is a point
of non-uniform approach, i.e.,

¢ = lim lim ¢g(K,L)# lim lim ¢(K,L)=g. (2)
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The first of these two limits is the thermodynamically relevant one. Baker and
Kawashima [2] recently found that the second of these two limits can be taken
as a lower bound on the first, and so the question of whether ¢g* > 0 or not
could be answered, if one could show that the second limit g > 0.

A key feature to notice in analysing the nature of g is the observation
of Baker and Erpenbeck [3] that, for the three-dimensional, Ising model in
the range where £ /L is bounded away from zero, (K/K.)'®*g(K, L) plotted



Table 1. Table of the curve crossing values of K, g, (£1./L)? and U.

n@2n Kg.0 98 Keo | (E0/0)% Kue Ug
2@4| 0213542 8.24+3| 0.2164+2| 0.337+1| 0.2274+3 | -1.5836=7
4®8| 0.2209+1 |5.77+£6| 0221342 | 0.4114+6| 0.2227+1| —-1.501+4
8®16|0.22156+7 | 5.241|0.221614+4 | 0.426+5(0.22201+2 | —1.489+2
16 ® 32|0.22164+2 | 5.141|0.2216541 | 0.432+3(0.22168+2 | —1.425+9
32 ® 6402216541 | 5.0+42(0.22165+2 | 0.428-10 | 0.221661 | —1.414+7

against &1, /L converges fairly rapidly as L — oo to a single function. We
have done more calculations of these quantities for the three-dimensional, Ising
model on the simple-cubic lattice, using the same computer code as in [2]
which is a Swendsen-Wang [4] procedure with improved estimators. The results
are displayed in Fig. 1. The reason for the factor of (K/K_.)!® is to keep
the quantity plotted finite as K — 0, and unchanged at the critical point.
We have used the estimate of Gupta and Tamayo [5], K. ~ 0.221655 here.
This value also agrees within error with the recent results of Blote et al. [6],
K. ~ 0.2216546 + 10.

In the limit as the system size becomes large, the Binder [7] cumulant ratio,
U = (M*)/({M?))? — 3, where M is the sum over the lattice of the Ising
spins, is zero for K < K., minus two for K > K. and some intermediate, fixed-
point value U* for K = K.. Binder has argued that the crossover point of U for
successively larger system sizes is a good estimator for the critical temperature.
Baker [1] found this proceedure to be about an order of magnitude better than
using the peak in the susceptibility. He also noted that the structure of the
approach to the infinite, system-size limit is such that the renormalized coupling
constant must also display a similar set of crossover points giving estimates of
the critical temperature. For the purpose of computing the crossing it is useful
to have systematically varying curves, such as used by Gupta and Tamayo [5].
They used a histogram reweighting scheme. To the same end, we have used the
same sequence of random numbers for the various different temperatures on the
same system size. In addition we have made a series of runs with independent
sets of random numbers for the different sized systems at K = 0.221655 ~ K..
The values of the crossings found for K, g, (£1,/L)?, and U are listed in Table
1. The 23 results were done exactly, numerically. The 43, 8%, and 162 were run
300,000 Monte Carlo sweeps or 400,000 for some of the 162 cases. The 323 and
643 were run 400,000 Monte Carlo sweeps, except for U for L = 64 the better



Table 2. Table of finite size values
for K = 0.221655 ~ K..

L| UK)| (/L) 9(K)| ¢(K)|9(Kvg,L)
2| —1.55264 | 0.36584(7.01740| 140
4|-1.483+2|0.418+2| 5.49+4| -390| 3.96+11
8|-1.445+2|0.428+2| 5.164+4| -780| 4.40+11
16 |-1.42143(0.43042 | 5.0543 | —1900|  4.26+7
32| -1.410+4 | 0.433+3 | 4.97+4| —6800 4842
64| -1.407+4 | 0.437+4 | 4.89+6 |-14000 4.942
128 | ~1.40444
256 | 1.397+6

data of Gupta and Tamayo [5] was used. Initialization was several hundred
sweeps, with the number increasing with system size. These crossings have
been determined by linear interpolation from our data. The quoted errors are
single standard deviations and are in units of the last figure quoted. It is to be
noticed that, within error, the crossing values for g and (€7, /L)% move to higher
values of K, while those for U move to lower values giving confidence that we
may have, within our error, bracketed the critical temperature. The results
from U are not in contradiction with those of [5], where there is seen some
possibility of non-monotonic behavior. The errors prevent us from making a
clear distinction here. Thus our results bracket from above and below, within
their errors, the value of K. proposed in refs. [5 & 6]. The results for the
crossing values for g are in contrast to the results in two dimensions [1], where
the crossing value of K decreases with system size and the value of g at the
crossing increases.

The error, |K,; g — K|, appears to be very roughly proportional to L3 for
the crossing values determined by g(K). The rate that g(K, g) approaches g
is just a reflection in the curve of Fig. 1 of rate of approach of K, g to K.. The
rates of convergence of the other series are less clear.

We report in Table 2, in analogy with the presentation of ref. [1], the values
taken at our estimated critical point as the system size increases. We are able
to extend the system-size for U to L = 128, 256 by the use of the data of
ref. [5]. The cross comparison of this data with the current calculations for
L = 64 is within the error bars. The same extension can not be made for the
other quantities as the extrapolation of the estimator of £;, to zero momentum
was not incorporated in the analysis of [5]. This difference is irrelevant for the
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thermodynamic limit, ¢g*, but leads to about a 10% difference in §. It is to
be noted that values of g, (§1/L)? and U appear to converge rapidly as the
system size increases, and the system-size variation disappears into the error
near the bottom of the table. The picture of g(K) presented in refs. [1 & 2]
envisions a slope which rapidly increases with system size at the critical point
to accommodate g* # §. This view is well supported by the (very rough) values
of ¢'(K) which were obtained by numerical differentiation and are displayed in
Table 2. These values increase roughly proportional to L*/3. A more detailed
study of the slopes of other quantities was given in ref. [5].

In the last column of Table 2, we give the values of g(K, L) at the crossing
point of U(K, L) and U(K, %L) As remarked above, this crossing point seems
to be an upper bound for K.. As g is a decreasing function of K, this quantity
should be a lower bound for §. We note that g(Ky, g, L) as just defined and
tabulated in Table 2, is a generally increasing function of the system size, L.
There is a competition reflected here between the increase in the slope of g and
shown in the previous column which tends to lower the value, and the rate of
convergence of Ky g which tends to increase the value. As the latter seems
to be dominate, asmptotically, we have thus constructed what appears to be
numerically, an asymptotically increasing lower bound to g. Hence, from the
values in Table 2, we conclude at the 2 standard error level that ¢* > g 2 4.5 >
0. This more through study bolsters the conclusion of ref. [2], that g* > 0 and
so that hyperscaling holds. Note that the same type arguments applied to the
results in Table 1, indicate further likely bounds. If we use two standard errors
then we find 5.4 2 ¢. Similarly we find a lower bound for the large system limit
of (£1,/L)? of 0.426, and U* 2, — 1.43.
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